venn.js 31.3 KB
Newer Older
Luis Gangas committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
(function(venn) {
    "use strict";
    /** given a list of set objects, and their corresponding overlaps.
    updates the (x, y, radius) attribute on each set such that their positions
    roughly correspond to the desired overlaps */
    venn.venn = function(sets, overlaps, parameters) {
        parameters = parameters || {};
        parameters.maxIterations = parameters.maxIterations || 500;
        var lossFunction = parameters.lossFunction || venn.lossFunction;
        var initialLayout = parameters.layoutFunction || venn.greedyLayout;

        // initial layout is done greedily
        sets = initialLayout(sets, overlaps);

        // transform x/y coordinates to a vector to optimize
        var initial = new Array(2*sets.length);
        for (var i = 0; i < sets.length; ++i) {
            initial[2 * i] = sets[i].x;
            initial[2 * i + 1] = sets[i].y;
        }

        // optimize initial layout from our loss function
        var totalFunctionCalls = 0;
        var solution = venn.fmin(
            function(values) {
                totalFunctionCalls += 1;
                var current = new Array(sets.length);
                for (var i = 0; i < sets.length; ++i) {
                    current[i] = {x: values[2 * i],
                                  y: values[2 * i + 1],
                                  radius : sets[i].radius,
                                  size : sets[i].size};
                }
                return lossFunction(current, overlaps);
            },
            initial,
            parameters);

        // transform solution vector back to x/y points
        var positions = solution.solution;
        for (i = 0; i < sets.length; ++i) {
            sets[i].x = positions[2 * i];
            sets[i].y = positions[2 * i + 1];
        }

        return sets;
    };

    /** Returns the distance necessary for two circles of radius r1 + r2 to
    have the overlap area 'overlap' */
    venn.distanceFromIntersectArea = function(r1, r2, overlap) {
        // handle complete overlapped circles
        if (Math.min(r1, r2) * Math.min(r1,r2) * Math.PI <= overlap) {
            return Math.abs(r1 - r2);
        }

        return venn.bisect(function(distance) {
            return venn.circleOverlap(r1, r2, distance) - overlap;
        }, 0, r1 + r2);
    };

    /// gets a matrix of euclidean distances between all sets in venn diagram
    venn.getDistanceMatrix = function(sets, overlaps) {
        // initialize an empty distance matrix between all the points
        var distances = [];
        for (var i = 0; i < sets.length; ++i) {
            distances.push([]);
            for (var j = 0; j < sets.length; ++j) {
                distances[i].push(0);
            }
        }

        // compute distances between all the points
        for (i = 0; i < overlaps.length; ++i) {
            var current = overlaps[i];
            if (current.sets.length !== 2) {
                continue;
            }

            var left = current.sets[0],
                right = current.sets[1],
                r1 = Math.sqrt(sets[left].size / Math.PI),
                r2 = Math.sqrt(sets[right].size / Math.PI),
                distance = venn.distanceFromIntersectArea(r1, r2, current.size);
            distances[left][right] = distances[right][left] = distance;
        }
        return distances;
    };

    /** Lays out a Venn diagram greedily, going from most overlapped sets to
    least overlapped, attempting to position each new set such that the
    overlapping areas to already positioned sets are basically right */
    venn.greedyLayout = function(sets, overlaps) {
        // give each set a default position + radius
        var setOverlaps = {};
        for (var i = 0; i < sets.length; ++i) {
            setOverlaps[i] = [];
            sets[i].radius = Math.sqrt(sets[i].size / Math.PI);
            sets[i].x = sets[i].y = 0;
        }

        // map each set to a list of all the other sets that overlap it
        for (i = 0; i < overlaps.length; ++i) {
            var current = overlaps[i];
            if (current.sets.length !== 2) {
                continue;
            }

            var weight = (current.weight == null) ? 1.0 : current.weight;
            var left = current.sets[0], right = current.sets[1];
            setOverlaps[left].push ({set:right, size:current.size, weight:weight});
            setOverlaps[right].push({set:left,  size:current.size, weight:weight});
        }

        // get list of most overlapped sets
        var mostOverlapped = [];
        for (var set in setOverlaps) {
            if (setOverlaps.hasOwnProperty(set)) {
                var size = 0;
                for (i = 0; i < setOverlaps[set].length; ++i) {
                    size += setOverlaps[set][i].size * setOverlaps[set][i].weight;
                }

                mostOverlapped.push({set: set, size:size});
            }
        }

        // sort by size desc
        function sortOrder(a,b) {
            return b.size - a.size;
        }
        mostOverlapped.sort(sortOrder);

        // keep track of what sets have been laid out
        var positioned = {};
        function isPositioned(element) {
            return element.set in positioned;
        }

        // adds a point to the output
        function positionSet(point, index) {
            sets[index].x = point.x;
            sets[index].y = point.y;
            positioned[index] = true;
        }

        // add most overlapped set at (0,0)
        positionSet({x: 0, y: 0}, mostOverlapped[0].set);

        // get distances between all points
        var distances = venn.getDistanceMatrix(sets, overlaps);

        for (i = 1; i < mostOverlapped.length; ++i) {
            var setIndex = mostOverlapped[i].set,
                overlap = setOverlaps[setIndex].filter(isPositioned);
            set = sets[setIndex];
            overlap.sort(sortOrder);

            if (overlap.length === 0) {
                throw "Need overlap information for set " + JSON.stringify( set );
            }

            var points = [];
            for (var j = 0; j < overlap.length; ++j) {
                // get appropriate distance from most overlapped already added set
                var p1 = sets[overlap[j].set],
                    d1 = distances[setIndex][overlap[j].set];

                // sample positions at 90 degrees for maximum aesthetics
                points.push({x : p1.x + d1, y : p1.y});
                points.push({x : p1.x - d1, y : p1.y});
                points.push({y : p1.y + d1, x : p1.x});
                points.push({y : p1.y - d1, x : p1.x});

                // if we have at least 2 overlaps, then figure out where the
                // set should be positioned analytically and try those too
                for (var k = j + 1; k < overlap.length; ++k) {
                    var p2 = sets[overlap[k].set],
                        d2 = distances[setIndex][overlap[k].set];

                    var extraPoints = venn.circleCircleIntersection(
                        { x: p1.x, y: p1.y, radius: d1},
                        { x: p2.x, y: p2.y, radius: d2});

                    for (var l = 0; l < extraPoints.length; ++l) {
                        points.push(extraPoints[l]);
                    }
                }
            }

            // we have some candidate positions for the set, examine loss
            // at each position to figure out where to put it at
            var bestLoss = 1e50, bestPoint = points[0];
            for (j = 0; j < points.length; ++j) {
                sets[setIndex].x = points[j].x;
                sets[setIndex].y = points[j].y;
                var loss = venn.lossFunction(sets, overlaps);
                if (loss < bestLoss) {
                    bestLoss = loss;
                    bestPoint = points[j];
                }
            }

            positionSet(bestPoint, setIndex);
        }

        return sets;
    };

    /// Uses multidimensional scaling to approximate a first layout here
    venn.classicMDSLayout = function(sets, overlaps) {
        // get the distance matrix
        var distances = venn.getDistanceMatrix(sets, overlaps);

        // get positions for each set
        var positions = mds.classic(distances);

        // translate back to (x,y,radius) coordinates
        for (var i = 0; i < sets.length; ++i) {
            sets[i].x = positions[i][0];
            sets[i].y = positions[i][1];
            sets[i].radius = Math.sqrt(sets[i].size / Math.PI);
        }
        return sets;
    };

    /** Given a bunch of sets, and the desired overlaps between these sets - computes
    the distance from the actual overlaps to the desired overlaps. Note that
    this method ignores overlaps of more than 2 circles */
    venn.lossFunction = function(sets, overlaps) {
        var output = 0;

        function getCircles(indices) {
            return indices.map(function(i) { return sets[i]; });
        }

        for (var i = 0; i < overlaps.length; ++i) {
            var area = overlaps[i], overlap;
            if (area.sets.length == 2) {
                var left = sets[area.sets[0]],
                    right = sets[area.sets[1]];
                overlap = venn.circleOverlap(left.radius, right.radius,
                                             venn.distance(left, right));
            } else {
                overlap = venn.intersectionArea(getCircles(area.sets));
            }

            var weight = (area.weight == null) ? 1.0 : area.weight;
            output += weight * (overlap - area.size) * (overlap - area.size);
        }

        return output;
    };

    /** Scales a solution from venn.venn or venn.greedyLayout such that it fits in
    a rectangle of width/height - with padding around the borders. also
    centers the diagram in the available space at the same time */
    venn.scaleSolution = function(solution, width, height, padding) {
        var minMax = function(d) {
            var hi = Math.max.apply(null, solution.map(
                                    function(c) { return c[d] + c.radius; } )),
                lo = Math.min.apply(null, solution.map(
                                    function(c) { return c[d] - c.radius;} ));
            return {max:hi, min:lo};
        };

        width -= 2*padding;
        height -= 2*padding;

        var xRange = minMax('x'),
            yRange = minMax('y'),
            xScaling = width  / (xRange.max - xRange.min),
            yScaling = height / (yRange.max - yRange.min),
            scaling = Math.min(yScaling, xScaling),

            // while we're at it, center the diagram too
            xOffset = (width -  (xRange.max - xRange.min) * scaling) / 2,
            yOffset = (height - (yRange.max - yRange.min) * scaling) / 2;

        for (var i = 0; i < solution.length; ++i) {
            var set = solution[i];
            set.radius = scaling * set.radius;
            set.x = padding + xOffset + (set.x - xRange.min) * scaling;
            set.y = padding + yOffset + (set.y - yRange.min) * scaling;
        }

        return solution;
    };

    // sometimes text doesn't fit inside the circle, if thats the case lets wrap
    // the text here such that it fits
    // todo: looks like this might be merged into d3 (
    // https://github.com/mbostock/d3/issues/1642),
    // also worth checking out is
    // http://engineering.findthebest.com/wrapping-axis-labels-in-d3-js/
    // this seems to be one of those things that should be easy but isn't
    function wrapText() {
        var text = d3.select(this),
            data = text.datum(),
            width = data.radius,
            words = data.label.split(/\s+/).reverse(),
            maxLines = 3,
            minChars = (data.label.length + words.length) / maxLines,
            word = words.pop(),
            line = [word],
            joined,
            lineNumber = 0,
            lineHeight = 1.1, // ems
            tspan = text.text(null).append("tspan").text(word);

        while (word = words.pop()) {
            line.push(word);
            joined = line.join(" ");
            tspan.text(joined);
            if (joined.length > minChars && tspan.node().getComputedTextLength() > width) {
                line.pop();
                tspan.text(line.join(" "));
                line = [word];
                tspan = text.append("tspan").text(word);
                lineNumber++;
            }
        }

        var initial = 0.35 - lineNumber * lineHeight / 2,
            x = Math.floor(data.textCenter.x),
            y = Math.floor(data.textCenter.y);

        text.selectAll("tspan")
            .attr("x", x)
            .attr("y", y)
            .attr("dy", function(d, i) {
                 return (initial + i * lineHeight) + "em";
            });
    }

    function weightedSum(a, b) {
        var ret = new Array(a[1].length || 0);
        for (var j = 0; j < ret.length; ++j) {
            ret[j] = a[0] * a[1][j] + b[0] * b[1][j];
        }
        return ret;
    }

    /** finds the zeros of a function, given two starting points (which must
     * have opposite signs */
    venn.bisect = function(f, a, b, parameters) {
        parameters = parameters || {};
        var maxIterations = parameters.maxIterations || 100,
            tolerance = parameters.tolerance || 1e-10,
            fA = f(a),
            fB = f(b),
            delta = b - a;

        if (fA * fB > 0) {
            throw "Initial bisect points must have opposite signs";
        }

        if (fA === 0) return a;
        if (fB === 0) return b;

        for (var i = 0; i < maxIterations; ++i) {
            delta /= 2;
            var mid = a + delta,
                fMid = f(mid);

            if (fMid * fA >= 0) {
                a = mid;
            }

            if ((Math.abs(delta) < tolerance) || (fMid === 0)) {
                return mid;
            }
        }
        return a + delta;
    };

    /** minimizes a function using the downhill simplex method */
    venn.fmin = function(f, x0, parameters) {
        parameters = parameters || {};

        var maxIterations = parameters.maxIterations || x0.length * 200,
            nonZeroDelta = parameters.nonZeroDelta || 1.1,
            zeroDelta = parameters.zeroDelta || 0.001,
            minErrorDelta = parameters.minErrorDelta || 1e-5,
            rho = parameters.rho || 1,
            chi = parameters.chi || 2,
            psi = parameters.psi || -0.5,
            sigma = parameters.sigma || 0.5,
            callback = parameters.callback;

        // initialize simplex.
        var N = x0.length,
            simplex = new Array(N + 1);
        simplex[0] = x0;
        simplex[0].fx = f(x0);
        for (var i = 0; i < N; ++i) {
            var point = x0.slice();
            point[i] = point[i] ? point[i] * nonZeroDelta : zeroDelta;
            simplex[i+1] = point;
            simplex[i+1].fx = f(point);
        }

        var sortOrder = function(a, b) { return a.fx - b.fx; };

        for (var iteration = 0; iteration < maxIterations; ++iteration) {
            simplex.sort(sortOrder);
            if (callback) {
                callback(simplex);
            }

            if (Math.abs(simplex[0].fx - simplex[N].fx) < minErrorDelta) {
                break;
            }

            // compute the centroid of all but the worst point in the simplex
            var centroid = new Array(N);
            for (i = 0; i < N; ++i) {
                centroid[i] = 0;
                for (var j = 0; j < N; ++j) {
                    centroid[i] += simplex[j][i];
                }
                centroid[i] /= N;
            }

            // reflect the worst point past the centroid  and compute loss at reflected
            // point
            var worst = simplex[N];
            var reflected = weightedSum([1+rho, centroid], [-rho, worst]);
            reflected.fx = f(reflected);

            var replacement = reflected;

            // if the reflected point is the best seen, then possibly expand
            if (reflected.fx <= simplex[0].fx) {
                var expanded = weightedSum([1+chi, centroid], [-chi, worst]);
                expanded.fx = f(expanded);
                if (expanded.fx < reflected.fx) {
                    replacement = expanded;
                }
            }

            // if the reflected point is worse than the second worst, we need to
            // contract
            else if (reflected.fx >= simplex[N-1].fx) {
                var shouldReduce = false;
                var contracted;

                if (reflected.fx <= worst.fx) {
                    // do an inside contraction
                    contracted = weightedSum([1+psi, centroid], [-psi, worst]);
                    contracted.fx = f(contracted);
                    if (contracted.fx < worst.fx) {
                        replacement = contracted;
                    } else {
                        shouldReduce = true;
                    }
                } else {
                    // do an outside contraction
                    contracted = weightedSum([1-psi * rho, centroid], [psi*rho, worst]);
                    contracted.fx = f(contracted);
                    if (contracted.fx <= reflected.fx) {
                        replacement = contracted;
                    } else {
                        shouldReduce = true;
                    }
                }

                if (shouldReduce) {
                    // do reduction. doesn't actually happen that often
                    for (i = 1; i < simplex.length; ++i) {
                        simplex[i] = weightedSum([1 - sigma, simplex[0]],
                                                 [sigma - 1, simplex[i]]);
                        simplex[i].fx = f(simplex[i]);
                    }
                }
            }

            simplex[N] = replacement;
        }

        simplex.sort(sortOrder);
        return {f : simplex[0].fx,
                solution : simplex[0]};
    };

    /** returns a svg path of the intersection area of a bunch of circles */
    venn.intersectionAreaPath = function(circles) {
        var stats = {};
        venn.intersectionArea(circles, stats);
        var arcs = stats.arcs;

        if (arcs.length === 0) {
            return "M 0 0";
        }

        var ret = ["\nM", arcs[0].p2.x, arcs[0].p2.y];
        for (var i = 0; i < arcs.length; ++i) {
            var arc = arcs[i], r = arc.circle.radius, wide = arc.width > r;
            ret.push("\nA", r, r, 0, wide ? 1 : 0, 1, arc.p1.x, arc.p1.y);
        }

        return ret.join(" ");
    };

    // computes the center for text by sampling perimiter of circle, and taking
    // the average of points on perimeter that are only in that circle
    function computeTextCenters(sets, width, height, diagram) {
        // basically just finding the center point of each region by sampling
        // points in a grid and taking the average sampled point for each region
        // There is probably an analytic way of computing this exactly, but
        // this works well enough for our purposes
        var sums = [];
        for (var i = 0; i < sets.length; ++i) {
            sums.push({'x' : 0, 'y' : 0, 'count' : 0});
        }

        var samples = 32;
        for (var i = 0; i < samples; ++i) {
            var x = i * width / samples;
            for (var j = 0; j < samples; ++j) {
                var y = j * height / samples;
                var point = {'x' : x, 'y' : y};

                var contained = []

                for (var k = 0; k < sets.length; ++k) {
                    if (venn.distance(point, sets[k]) <= sets[k].radius) {
                        contained.push(k);
                    }
                }
                if (contained.length == 1) {
                    var sum = sums[contained[0]];
                    sum.x += point.x;
                    sum.y += point.y;
                    sum.count += 1;
                }
            }
        }

        for (var i = 0; i < sets.length; ++i) {
            var sum = sums[i];
            if (sum.count) {
                sets[i].textCenter = { 'x' : sum.x / sum.count,
                                       'y' : sum.y / sum.count};
            } else {
                // no sampled points, possibly completely overlapped (or tiny)
                // use circle centre
                sets[i].textCenter = { 'x' : sets[i].x,
                                       'y' : sets[i].y};
            }
        }
    }

    venn.drawD3Diagram = function(element, dataset, width, height, parameters) {
        parameters = parameters || {};

        var colours = d3.scale.category10(),
            padding = ('padding' in parameters) ? parameters.padding : 6;

        dataset = venn.scaleSolution(dataset, width, height, padding);
        computeTextCenters(dataset, width, height);

        var svg = element.append("svg")
                .attr("width", width)
                .attr("height", height);

        var diagram = svg.append( "g" );

        var nodes = diagram.append("g").selectAll("circle")
                         .data(dataset)
                         .enter()
                         .append("g");

        var circles = nodes.append("circle")
               .attr("r",  function(d) { return d.radius; })
               .style("fill-opacity", 0.3)
               .attr("cx", function(d) { return d.x; })
               .attr("cy", function(d) { return d.y; })
               .style("fill", function(d, i) { return colours(i); });

        var text = nodes.append("text")
               .attr("dy", ".35em")
               .attr("x", function(d) { return Math.floor(d.textCenter.x); })
               .attr("y", function(d) { return Math.floor(d.textCenter.y); })
               .attr("text-anchor", "middle")
               .style("fill", function(d, i) { return colours(i); })
               .call(function (text) { text.each(wrapText); });

        return {'svg' : svg,
                'nodes' : nodes,
                'circles' : circles,
                'text' : text };
    };

    venn.updateD3Diagram = function(diagram, dataset, parameters) {
        parameters = parameters || {};
        var padding = ('padding' in parameters) ? parameters.padding : 6,
            duration = ('duration' in parameters) ? parameters.duration : 400;

        var svg = diagram.svg,
            width = parseInt(svg.attr('width'), 10),
            height = parseInt(svg.attr('height'), 10);

        dataset = venn.scaleSolution(dataset, width, height, padding);
        computeTextCenters(dataset, width, height);

        var transition = diagram.nodes
            .data(dataset)
            .transition()
            .duration(duration);

        transition.select("circle")
            .attr("cx", function(d) { return d.x; })
            .attr("cy", function(d) { return d.y; })
            .attr("r",  function(d) { return d.radius; });

        // transtitioning the text is a little tricky in the case
        // of wrapping. so lets basically transition unwrapped text
        // and at the end of the transition we'll wrap it again
        transition.select("text")
            .text(function (d) { return d.label; } )
            .each("end", wrapText)
            .attr("x", function(d) { return Math.floor(d.textCenter.x); })
            .attr("y", function(d) { return Math.floor(d.textCenter.y); });
    };

    var SMALL = 1e-10;

    /** Returns the intersection area of a bunch of circles (where each circle
     is an object having an x,y and radius property) */
    venn.intersectionArea = function(circles, stats) {
        // get all the intersection points of the circles
        var intersectionPoints = getIntersectionPoints(circles);

        // filter out points that aren't included in all the circles
        var innerPoints = intersectionPoints.filter(function (p) {
            return venn.containedInCircles(p, circles);
        });

        var arcArea = 0, polygonArea = 0, arcs = [], i;

        // if we have intersection points that are within all the circles,
        // then figure out the area contained by them
        if (innerPoints.length > 1) {
            // sort the points by angle from the center of the polygon, which lets
            // us just iterate over points to get the edges
            var center = venn.getCenter(innerPoints);
            for (i = 0; i < innerPoints.length; ++i ) {
                var p = innerPoints[i];
                p.angle = Math.atan2(p.x - center.x, p.y - center.y);
            }
            innerPoints.sort(function(a,b) { return b.angle - a.angle;});

            // iterate over all points, get arc between the points
            // and update the areas
            var p2 = innerPoints[innerPoints.length - 1];
            for (i = 0; i < innerPoints.length; ++i) {
                var p1 = innerPoints[i];

                // polygon area updates easily ...
                polygonArea += (p2.x + p1.x) * (p1.y - p2.y);

                // updating the arc area is a little more involved
                var midPoint = {x : (p1.x + p2.x) / 2,
                                y : (p1.y + p2.y) / 2},
                    arc = null;

                for (var j = 0; j < p1.parentIndex.length; ++j) {
                    if (p2.parentIndex.indexOf(p1.parentIndex[j]) > -1) {
                        // figure out the angle halfway between the two points
                        // on the current circle
                        var circle = circles[p1.parentIndex[j]],
                            a1 = Math.atan2(p1.x - circle.x, p1.y - circle.y),
                            a2 = Math.atan2(p2.x - circle.x, p2.y - circle.y);

                        var angleDiff = (a2 - a1);
                        if (angleDiff < 0) {
                            angleDiff += 2*Math.PI;
                        }

                        // and use that angle to figure out the width of the
                        // arc
                        var a = a2 - angleDiff/2,
                            width = venn.distance(midPoint, {
                                x : circle.x + circle.radius * Math.sin(a),
                                y : circle.y + circle.radius * Math.cos(a)
                            });

                        // pick the circle whose arc has the smallest width
                        if ((arc === null) || (arc.width > width)) {
                            arc = { circle : circle,
                                    width : width,
                                    p1 : p1,
                                    p2 : p2};
                        }
                    }
                }
                arcs.push(arc);
                arcArea += venn.circleArea(arc.circle.radius, arc.width);
                p2 = p1;
            }
        } else {
            // no intersection points, is either disjoint - or is completely
            // overlapped. figure out which by examining the smallest circle
            var smallest = circles[0];
            for (i = 1; i < circles.length; ++i) {
                if (circles[i].radius < smallest.radius) {
                    smallest = circles[i];
                }
            }

            // make sure the smallest circle is completely contained in all
            // the other circles
            var disjoint = false;
            for (i = 0; i < circles.length; ++i) {
                if (venn.distance(circles[i], smallest) > Math.abs(smallest.radius - circles[i].radius)) {
                    disjoint = true;
                    break;
                }
            }

            if (disjoint) {
                arcArea = polygonArea = 0;

            } else {
                arcArea = smallest.radius * smallest.radius * Math.PI;
                arcs.push({circle : smallest,
                           p1: { x: smallest.x,        y : smallest.y + smallest.radius},
                           p2: { x: smallest.x - SMALL, y : smallest.y + smallest.radius},
                           width : smallest.radius * 2 });
            }
        }

        polygonArea /= 2;
        if (stats) {
            stats.area = arcArea + polygonArea;
            stats.arcArea = arcArea;
            stats.polygonArea = polygonArea;
            stats.arcs = arcs;
            stats.innerPoints = innerPoints;
            stats.intersectionPoints = intersectionPoints;
        }

        return arcArea + polygonArea;
    };

    /** returns whether a point is contained by all of a list of circles */
    venn.containedInCircles = function(point, circles) {
        for (var i = 0; i < circles.length; ++i) {
            if (venn.distance(point, circles[i]) > circles[i].radius + SMALL) {
                return false;
            }
        }
        return true;
    };

    /** Gets all intersection points between a bunch of circles */
    function getIntersectionPoints(circles) {
        var ret = [];
        for (var i = 0; i < circles.length; ++i) {
            for (var j = i + 1; j < circles.length; ++j) {
                var intersect = venn.circleCircleIntersection(circles[i],
                                                              circles[j]);
                for (var k = 0; k < intersect.length; ++k) {
                    var p = intersect[k];
                    p.parentIndex = [i,j];
                    ret.push(p);
                }
            }
        }
        return ret;
    }

    venn.circleIntegral = function(r, x) {
        var y = Math.sqrt(r * r - x * x);
        return x * y + r * r * Math.atan2(x, y);
    };

    /** Returns the area of a circle of radius r - up to width */
    venn.circleArea = function(r, width) {
        return venn.circleIntegral(r, width - r) - venn.circleIntegral(r, -r);
    };


    /** euclidean distance between two points */
    venn.distance = function(p1, p2) {
        return Math.sqrt((p1.x - p2.x) * (p1.x - p2.x) +
                         (p1.y - p2.y) * (p1.y - p2.y));
    };


    /** Returns the overlap area of two circles of radius r1 and r2 - that
    have their centers separated by distance d. Simpler faster
    circle intersection for only two circles */
    venn.circleOverlap = function(r1, r2, d) {
        // no overlap
        if (d >= r1 + r2) {
            return 0;
        }

        // completely overlapped
        if (d <= Math.abs(r1 - r2)) {
            return Math.PI * Math.min(r1, r2) * Math.min(r1, r2);
        }

        var w1 = r1 - (d * d - r2 * r2 + r1 * r1) / (2 * d),
            w2 = r2 - (d * d - r1 * r1 + r2 * r2) / (2 * d);
        return venn.circleArea(r1, w1) + venn.circleArea(r2, w2);
    };


    /** Given two circles (containing a x/y/radius attributes),
    returns the intersecting points if possible.
    note: doesn't handle cases where there are infinitely many
    intersection points (circles are equivalent):, or only one intersection point*/
    venn.circleCircleIntersection = function(p1, p2) {
        var d = venn.distance(p1, p2),
            r1 = p1.radius,
            r2 = p2.radius;

        // if to far away, or self contained - can't be done
        if ((d >= (r1 + r2)) || (d <= Math.abs(r1 - r2))) {
            return [];
        }

        var a = (r1 * r1 - r2 * r2 + d * d) / (2 * d),
            h = Math.sqrt(r1 * r1 - a * a),
            x0 = p1.x + a * (p2.x - p1.x) / d,
            y0 = p1.y + a * (p2.y - p1.y) / d,
            rx = -(p2.y - p1.y) * (h / d),
            ry = -(p2.x - p1.x) * (h / d);

        return [{ x: x0 + rx, y : y0 - ry },
                { x: x0 - rx, y : y0 + ry }];
    };

    /** Returns the center of a bunch of points */
    venn.getCenter = function(points) {
        var center = { x: 0, y: 0};
        for (var i =0; i < points.length; ++i ) {
            center.x += points[i].x;
            center.y += points[i].y;
        }
        center.x /= points.length;
        center.y /= points.length;
        return center;
    };
}(window.venn = window.venn || {}));